Plasma osmolyte concentrations and rectal gland mass of bull sharks Carcharhinus leucas, captured along a salinity gradient.
نویسندگان
چکیده
Bull sharks (Carcharhinus leucas) were captured across a salinity gradient from freshwater (FW) to seawater (SW). Across all salinities, C. leucas were hyperosmotic to the environment. Plasma osmolarity in FW-captured animals (642 +/- 7 mosM) was significantly reduced compared to SW-captured animals (1067 +/- 21 mosM). In FW animals, sodium, chloride and urea were 208 +/- 3, 203 +/- 3 and 192 +/- 2 mmol l(-1), respectively. Plasma sodium, chloride and urea in SW-captured C. leucas were 289 +/- 3, 296 +/- 6 and 370 +/- 10 mmol l(-1), respectively. The increase in plasma osmolarity between FW and SW was not linear. Between FW (3 mosM) and 24 per thousand SW (676 mosM), plasma osmolarity increased by 22% or 0.92% per 1 per thousand rise in salinity. Between 24 per thousand and 33 per thousand, plasma osmolarity increased by 33% or 4.7% per 1 per thousand rise in salinity, largely due to a sharp increase in plasma urea between 28 per thousand and 33 per thousand. C. leucas moving between FW and SW appear to be faced with three major osmoregulatory challenges, these occur between 0-10 per thousand, 11-20 per thousand and 21-33 per thousand. A comparison between C. leucas captured in FW and estuarine environments (20-28 per thousand ) in the Brisbane River revealed no difference in the mass of rectal glands between these animals. However, a comparison of rectal gland mass between FW animals captured in the Brisbane River and Rio San Juan/Lake Nicaragua showed that animals in the latter system had a significantly smaller rectal gland mass at a given length than animals in the Brisbane River. The physiological challenges and mechanisms required for C. leucas moving between FW and SW, as well as the ecological implications of these data are discussed.
منابع مشابه
Branchial osmoregulation in the euryhaline bull shark, Carcharhinus leucas: a molecular analysis of ion transporters.
Bull sharks, Carcharhinus leucas, are one of only a few species of elasmobranchs that live in both marine and freshwater environments. Osmoregulation in euryhaline elasmobranchs is achieved through the control and integration of various organs (kidney, rectal gland and liver) in response to changes in environmental salinity. However, little is known regarding the mechanisms of ion transport in ...
متن کاملRectal Glands of Marine and Fresh-Water Sharks: Comparative Histology.
The rectal glands of elasmobranchs perform the function of salt-excreting organs. These glands are smaller and show regressive changes in specimens of the bull shark, Carcharhinus leucas found in fresh-water environment, compared with specimens of this and other species from a marine habitat.
متن کاملMovement and distribution of young bull sharks Carcharhinus leucas in a variable estuarine environment
The space utilization and distribution of young (<2 yr old) bull sharks Carcharhinus leucas within a 27 km stretch of the Caloosahatchee River estuary in Southwest Florida was examined using an array of acoustic monitors to define influences of environmental variables. A total of 56 young sharks from 3 cohorts (2003, 2004, 2005) were fitted with acoustic tags and monitored for up to 460 d. Shar...
متن کاملEnvironmental influences on the occurrence of coastal sharks in estuarine waters
Long-term fisheries independent gill net surveys conducted in Texas estuaries from 1975 to 2006 were used to develop spatially explicit estuarine habitat use models for 3 coastal shark species: bull shark Carcharhinus leucas, blacktip shark C. limbatus, and bonnethead shark Sphyrna tiburo. Relationships between environmental predictors and shark distribution were investigated using boosted regr...
متن کاملOceans apart? Short-term movements and behaviour of adult bull sharks Carcharhinus leucas in Atlantic and Pacific Oceans determined from pop-off satellite archival tagging.
Adult bull sharks Carcharhinus leucas were monitored with electronic tags to investigate horizontal and vertical movements in the Atlantic and Pacific Oceans. In both locations, C. leucas showed some fidelity to specific coastal areas with only limited horizontal movements away from the tagging sites after tag attachment. Fish tagged in the Bahamas were detected mostly in the upper 20 m of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comparative biochemistry and physiology. Part A, Molecular & integrative physiology
دوره 138 3 شماره
صفحات -
تاریخ انتشار 2004